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Abstract. We study analytic and numerical solutions for a model for the dynamics of cluster
growth with fragmentation. The model is restricted to a process involving a monomer–cluster
reaction and the cluster ofN particles cannot adsorb particles, it can only split up, that is, the
XN cluster is unstable, and for mathematical convenience we propose that it is split up mainly
into monomers. In this model both coagulation and fragmentation processes scale with cluster
size. Both sourceless and with-source evolutions are discussed. Our analysis shows that in the
with-source case the final evolution for the concentrations is of the formt1/2 for Xn(n < N)

and linear ont for XN . By comparison, when there is no restriction to the maximum size for
polymers and no dissociation the evolution goes asymptotically asXn ∼ e−τ = 1/t .

1. Introduction

Aggregation of macromolecular units into larger structures is of wide interest in many
biological, chemical and physical processes which include organic polymer reactions,
formation of droplets of water in clouds, etc. Traditionally, one approach for studying the
problem has been through the Smoluchowski equation [1], which provides the evolution of
the cluster-size distribution within a mean-field description. If dissociation (fragmentation)
of the clusters is allowed, reversible aggregation can be studied.

The process of aggregation–fragmentation can be schematically represented by:

Xp +Xq
Kp,q

̄
Kp,q

Xp+q (1.1)

whereXp represents both a cluster or polymer containingp elementary units orp-mers
and the concentration at timet . Kij and K̄ij are the forward and reverse rate coefficients
representing the aggregation and fragmentation rates, respectively, also called kernels. The
kinetic equation which describes the evolution of the cluster size distribution, the so-called
generalized Smoluchoswki equation [2–7] is:

dXp
dt
= 1

2

∑
q+r=p

[Kq,rXqXr − K̄q,rXp] −
∞∑
q=1

[Kq,pXqXp − K̄q,pXp+q ]. (1.2)

In (1.2) the first two terms represent the rate of change of thep-cluster due to the coalescence
of smaller clusters and its break-up into smaller ones. The next two terms represent the

§ Author to whom correspondence should be addressed.
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6616 F Chávez et al

change of rate due to the coalescence of thep-cluster with others and the break-up of larger
cluster intop-clusters. A general solution of the above equation is not possible but some
analytical results have been obtained for special combinations of the kernels [8–10] and
simulations of the process are also available [11].

Much of the interest in pure aggregation has addressed the scaling properties of the
kinetics. Scaling laws in reversible aggregation have also been studied by a number of
researchers [12–14] and exponents that relate the steady-state distributions to the details of
the kernels have been obtained. Recently, Blackman and Marshall [15] studied reversible
aggregation in the limit in which monomers entirely dominate the process. They considered
aggregation and dissociation processes that scale as some power of cluster size and found
growth exponents for a range of parameters that admit scaling solutions.

In this paper we also study a model based on the Smoluchowski equation in which
monomers play a primary role in both aggregation and dissociation processes. In our model
the cluster ofN particles cannot adsorb particles, they can only split up, that is, theXN
cluster is unstable, and for mathematical convenience we propose that it is split up mainly
into monomers. Besides both coagulation and fragmentation processes scale with cluster
size. Both sourceless and with-source evolution are considered.

2. Model and units

We consider a model for the cluster–monomer reaction where dissociation is absent for
clusters smaller than a critical size. Such a model could be useful in situations in which
there is a critical nucleus, with clusters of smaller size being stable until they reach the
critical size. Furthermore, we assume that the decomposition is such that the cluster of size
N is broken into monomers.

The process of aggregation–fragmentation can be schematically represented by:

Xp +X1
Kp
⇀Xp+1 p = 1, 2, . . . , N − 1

XN
K̄
⇀NX1 (2.1)

whereXp represents both a cluster or polymer containingp elementary units orp-mers and
the concentration at timet . Ki andK̄ are rate coefficients representing the aggregation and
fragmentation rates, respectively.

The kinetic equations which describe the evolution of the cluster-size distribution is, for
monomer evolution

dX1

dt
= A− 2K1X

2
1 −X1

N−1∑
s=2

KsXs + K̄NXN (2.2a)

and, fors-mers:
dXs
dt
= −KsX1Xs +Ks−1X1Xs−1 s = 2, . . . , N − 1 (2.2b)

and
dXN

dt
= −K̄XN +KN−1X1XN−1 (2.2c)

where the source termA allows the injection of monomers into the system. We will consider
a scaled dissociation model [14], where the aggregation and dissociation rates are supposed
to be proportional to the size of the clusters:

Ks = K1s K̄ = N/τ. (2.3)
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Hereτ denotes the decay time. Using the following dimensionless units:

Xs → Xs/(K1τ) t → τ t A→ A/(K1τ
2) (2.4)

equations (2.2a)–(2.2c) become:

dX1

dt
= A− 2X2

1 −X1

N−1∑
s=2

sXs +N2XN (2.5a)

dXs
dt
= X1[(s − 1)Xs−1− sXs ] s = 2, . . . , N − 1 (2.5b)

dXN
dt
= (N − 1)X1XN−1−NXN. (2.5c)

3. Sourceless case

3.1. Stationary solution

In this caseA = 0. In this sourceless model the total mass
∑
sXx = M is conserved. As

can be seen from the equations, there are two kinds of stationary solutions:
(a)

X0
1 = X0

N = 0

X0
s depending on the initial conditions for 1< s < N and
(b)

X0
s =

X0
1

s
s = 2, . . . , N − 1

X0
N =

(X0
1)

2

N
(3.1.1)

X0
1 being solution of

(X0
1)

2+ (N − 1)X0
1 −M = 0

which yields

X0
1 = 1

2

(√
(N − 1)2+ 4M + 1−N

)
. (3.1.2)

3.2. Stability analysis

To determine the local stability of the stationary states we consider the fluctuations around
those states, i.e. we will study the linearized equations. Let

Xs = X0
s + Ys (3.2.1)

whereYs is the deviation ofXs with respect to its equilibrium value. From equations (2.5a)–
(2.5c) we obtain a set of differential equations forYs . The set of equations can be written
in matrix form:

dY

dt
= RY (3.2.2)

whereY = (Y1, . . . , YN), andR = (Aqp) is the ‘reaction matrix’. In terms of components,
(3.2.2) can be written as:

dYs
dt
=
∑
q

Aqs Yq. (3.2.3)
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If R can be diagonalized, the solution of (3.2.3) is

Ys(t) =
∑
η 6=0

CηU
η
s eηt (3.2.4)

whereη are the different eigenvalues andUη
s the different eigenvectors.

The explicit form of the reaction matrix for the stationary solutions(a) is

R =


−M 0 0 · · · N2

−2X0
2 0 0 · · · 0

2X0
2 − 3X0

3 0 0 · · · 0
· · · · · · · · · · · · · · ·

(N − 1)X0
N−1 0 0 · · · −N

 . (3.2.5)

It is easily seen that the eigenvectors(xi)i=1,...,N of R corresponding to the eigenvalue
λ satisfy

A1
1x1+ AN1 xN = λx1

A1
Nx1+ ANNxN = λxN

(3.2.6)

A1
s x1 = λx1 (3.2.7)

λ = 0 is obviously an eigenvalue ofR, corresponding to the(N−2)-dimensional eigenspace
definied byx1 = xN = 0. If x1 andxN are not both 0, (3.2.6) definesλ as a solution of

λ2− λ(A1
1+ ANN)+ A1

1A
N
N − A1

NA
N
1 = 0

the discriminant of which is

1 = (A1
1− ANN)2+ 4A1

NA
N
1 .

SinceA1
1, A

N
N are negative andA1

N,A
N
1 are positive, the solutions are always real and distinct

(except in exceptional cases) and this sum is negative. Then (3.2.6) and (3.2.7) define the
corresponding eigenvector.

If

A1
1A

N
N − A1

NA
N
1 = MN −N2(N − 1)X0

N−1 = N [M − (N − 1)X0
N−1 > 0

(M = total mass as before) then both eigenvalues are6 0 and the stationary states(a) are
stable in the sense of Lyapounov, but not asymptotically stable (a point is asymptotically
stable if all trajectories starting sufficiently near it tend to it asymptotically fort → ∞)
[16, 17] since the components of the perturbation in the(N −2)-dimensional null space are
invariant.

If

A1
1A

N
N − A1

NA
N
1 < 0

one eigenvalue is negative and one eigenvalue is positive and the stationary state is unstable.
The stationary solution(b), (3.1.2), has a more complicated reaction matrix given by:

R =


−4X0

1 −
∑N−1

s=2 sX
0
s −2X0

1 −3X0
1 · · · −(N − 1)X1 N2

X0
1 −2X0

1 0 · · · 0 0
0 2X0

1 −3X0
1 · · · 0 0

· · · · · · · · · · · · · · · · · ·
X0

1 0 0 · · · (N − 1)X1 −N

 . (3.2.8)

A general analytic analysis of the eigenvalues is not possible in this case and we turn
next to a numerical analysis.
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Figure 1. Stationary solution forX0
1, the full squares

indicate the stable solution, the open squares are the
continuation of solution(b).

3.3. Numerical solution of the kinetic equations and stability

The set of coupled nonlinear differential equations, equations (2.5a)–(2.5c), has been solved
numerically for different values of 3< N < 100 and the total mass was normalized,
M =∑N

s=1Xs = 1.
The numerical results show that for the important case where only monomers are initially

present, i.e.

Xi(0) =
{

1 if i = 1

0 otherwise
(3.3.1)

the stationary solution is(a) for N > 8 and is(b) for N < 8. Figure 1 shows the stable
solutionX0

1 asN is increased for this situation.
Another feature to be noted with the numerical calculations is that asN increases the

stationary values attain a limit (independent ofN ). This allows us to consider the next
approximation.

3.4. Analytic solution of an approximation to the kinetic equations

If N is large enough and ifM = ∑N
s=1 sXs is finite, it may be assumed thatXN � 1.

Let us suppose thatN2XN � X1 and consider the following approximation to the kinetic
equations, obtained by neglectingN2XN in (2.5a):

dX1

dt
= −X2

1 −X1M (3.4.1a)
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and, fors-mers:

dXs
dt
= −X1((s − 1)Xs−1− sXs) s = 2, . . . , N − 1. (3.4.1b)

Using the scaled variables

X1→ MX1 t → M−1t

it is always possible to takeM = 1 in (3.4.1a). Defining a new timeθ such that

X1 dt = dθ (3.4.2)

we obtain:
dX1

dθ
= −X1− 1 (3.4.3a)

and, fors-mers:

dXs
dθ
= −((s − 1)Xs−1− sXs) s = 2, . . . , N − 1 (3.4.3b)

whereN should be considered to be infinite in order that
∑
sXs should be constant.

The solution for the set of equations is of the form:

Xs(θ) =
s∑
k=1

ake
−kθ . (3.4.4)

If we consider again the initial conditions given by (3.1.1) the explicit solution is:

Xs(θ) = (1− e−θ )s−1

((
1+ 1

s

)
e−θ − 1

s

)
. (3.4.5)

Furthermore, because of (3.4.2) we haveθ = log(2− e−t ) and we obtain

lim
t→∞Xs(t) =

1

2s

(
1− 1

s

)
. (3.4.6)

Figure 2 displays the approach to equilibrium ofX1(t) andX2(t) obtained numerically
(full curve) and by(3.4.5) (broken curve) forN = 10. As can be seen, the approximation
used in (3.4.5) is very accurate. In fact, forN > 10 they are practically indistinguishable.
The plots for allXi(t), i 6= 1 (only shown in figure 2 forX2(t)) exhibit the typical behaviour
where they grow at the expense ofX1(t) until a stationary value is reached and the monomers
are exhausted. This solution was also obtained in [19].

The different moments, defined by

Mn =
∑
s

snXs

can also be calculated from (3.4.5). The zeroth moment (mean number of clusters) is

M0 = 1− θ = 1− log(2− e−t ) (3.4.7)

which decreases witht and tends to the stationary value

M0
0 =

∑
s

X0
s = 1+ log( 1

2) = 0.307.

The mean cluster size is given by:

S = M1/M0 = (1− θ)−1
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Figure 2. Monomer and dimer concentrationsX1(t), X2(t) as a function of time. The full
curves are the results of the numerical computation of the kinetic equations. The broken curves
refer to approximation (3.15).

and tends to

S0 ≈ 3.25.

It is found that the mean square fluctuation of this size is

σ 2 = M2

M0
−
(
M1

M0

)2

= (1− θ)−1e2θ − (1− θ)−2.

As a result, the relative fluctuationσ
S

at first increases with time, then it decreases to

the asymptotic valueσ
0

S0 ∼ 0.5. Thus, the fluctuation of the cluster size, although not very
small remains moderate, and it can be understood that this approximation is accurate for
N > 10, as shown by the numerical results. As an illustration, figure 3 shows the relative
fluctuationσ/S as a function of time forN = 20.

As stated before, equation (3.4.5) shows an excellent agreement forN > 10 for all
Xi(t), i 6= N . By solving numerically the complete set of kinetic equations one can see that
the evolution ofXN(t), shows a maximum whose location varies asN is increased, as it is
depicted in figure 4. The height of this maximum only has an important value for smallN

values (forN = 10 is of order 10−4).
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Figure 3. Relative fluctuationσ/S as a function of time forN = 20. σ 2 is the mean square
fluctuation andS is the mean cluster size.

4. Effect of a source

The presence of a source completely modifies the behaviour of theXk in time. The source is
modelled by adding a constant term,A, in (2.5a), which means the (continuous) deposition
of monomers at a constant rate. In order to obtain some analytic insight into this case
we next consider an infinite polymerization [19, 20] and then compare it with the finite
polymerization we have been studying so far.

4.1. Infinite polymerization

Let us consider the polymerization scheme:

X1+X1
K1
⇀X2

X1+Xn−1
Kn−1
⇀ Xn p = 1, 2, . . . .

(4.1)

We neglect all dissociation, and assume that there is no maximum size for the polymers.
If we have no monomers and no polymers of any size at timet = 0, we consider the case of
a source which introduces monomers at a constant rateA into the system. Then the kinetic
equations for the concentrations can easily be written in terms ofA andKi . Let us again
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Figure 4. N -mer concentrationXN(t) as a function of time (N = 10). For a larger value ofN ,
XN � 1.

assume that

Kn ∝ n
then the equations, after renormalizing the concentrations and time, are conveniently
expressed by means of the new variables

yn = nXn.
They read:

dy1

dt
= −y2

1 − y1M + a (4.2a)

dyn
dt
= n(yn−1− yn)y1 n > 2 (4.2b)

with a = constant (source term) and

M(t) =
∑
n>1

nXn(t) =
∑
n>1

yn(t). (4.3)

Obviously, we have from(4.2)

dM

dt
= a

so thatM(t) is the total concentration of monomers introduced att :

M = at. (4.4)



6624 F Chávez et al

4.1.1. Solution for monomers.Equation (4.2a) is closed and can be solved exactly. As a
matter of fact, let us write

y1

M(t)
= z1. (4.1.1)

Clearly, whent → 0, z1(t) → 1, since at very small times the system only contains the
monomers which have been introduced by the source.

Let us define

θ(t) = 1
2at

2 (4.1.2)

so that

dθ = M dt M = (2aθ) 1
2 .

Dividing (4.2a) by M2 we obtain

1

M

dM

dθ
z1+ dz1

dθ
= −z2

1 − z1+ 1

at2
. (4.1.3)

Noting that

1

M

dM

dθ
= 1

2θ
= 1

at2

we have
1

2θ
z1+ dz1

dθ
= −z2

1 − z1+ 1

2θ
(4.1.4)

we now write

z1 = 1

2θ
+ u (4.1.5)

u = 1

v
(4.1.6)

so that we successively obtain

du

dθ
+ u2+ u

(
1+ 3

2θ

)
= 0 (4.1.7)

dv

dθ
= v

(
1+ 3

2θ

)
+ 1 (4.1.8)

and

v = θ3/2eθ
(
C +

∫ θ

e−θ
′
θ ′−3/2 dθ ′

)
= θ3/2eθ

(
C − 2θ−1/2e−θ −

∫ θ

0
e−θ

′
θ ′−1/2 dθ ′

)
. (4.1.9)

Sincez1 → 1 when t → 0, or θ → 0, v should be equivalent to−2θ when θ → 0,
which impliesC = 0. Finally, we have

z1 = 1

2θ

(
1− 1

1+ θ1/2eθ
∫ θ

0 e−θ ′θ ′−1/2 dθ ′

)
or

z1 = 1

2θ

X

1+X (4.1.10)
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with

X = θ1/2eθ
∫ θ

0
e−θ

′
θ ′−1/2 dθ ′. (4.1.11)

It can be easily checked thatz1 as given by (4.1.10) and (4.1.11) actually tends to 1 if
θ → 0. As a matter of fact,∫ θ

0
e−θ

′
θ ′−1/2 dθ ′ = 2θ1/2e−θ +O(θ3/2)

so that

X ∼ 2θ whenθ → 0 (4.1.12a)

on the other hand

X ∼ θ1/2eθ0( 1
2) =
√
πθeθ if θ →∞. (4.1.12b)

Finally,

y1 = M(t)z1 = 1

t

X

1+X (4.1.13)

from which it is seen that

y1 ∼ at if t → 0

y1 ∼ 1

t
if t →∞.

Clearlyy1(t) has a maximum for a positive value oft . It can be shown that this maximum
is unique and corresponds toθ ' 0.6.

4.1.2. Solution for polymers.Let us define

τ =
∫ t

0
y1(t

′) dt ′ =
∫ θ

0
z1(θ

′) dθ ′. (4.1.14)

Then equations (4.2) can be written

dyn
dτ
= n(yn−1− yn) (n > 2) (4.1.15)

which gives, sinceyn(0) = 0:

yn(τ ) = n
∫ τ

0
e−n(τ−τ

′)yn−1(τ
′) dτ ′ (4.1.16a)

and

yn(τ ) = yn−1(τ )−
∫ τ

0
e−n(τ−τ

′) dyn−1(τ
′)

dτ ′
dτ ′. (4.1.16b)

Obviously d
dτ yn(t) > 0 for very small values ofτ > 0. Let us denoteτn the smallest

value ofτ > 0 such that

d

dτ
yn(τn) = 0 (4.1.17)

which by 4.1.15 is equivalent to

yn−1(τn)− yn(τn) = 0 (4.1.18)
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τn is finite. As a matter of fact, ifyn−1(τ ) → 0 when τ → ∞, (4.1.16a) shows that
yn(τ ) → 0 when τ → ∞, so that by induction this is true for alln. It results from
(4.1.16b) that

τn > τn−1

since
d

dτ
yn−1(τ ) > 0 for 0< τ < τn−1

which implies

yn−1(τ )− yn(τ ) > 0

and by (4.1.15)

d

dτ
yn(τ ) > 0 for all 0< τ 6 τn−1.

To estimateτn − τn−1, we write

d

dτ
yn(τn) ' d

dτ
yn(τn−1)+ d2

dτ 2
yn(τn−1)(τn − τn−1) = 0. (4.1.19)

By (4.1.15), we have

d2

dτ 2
yn(τn−1) = n d

dτ
yn(τn−1)− n d

dτ
yn(τn−1)

= −n d

dt
yn(τn−1).

So that by (4.1.19)

τn − τn−1 ' 1

n
. (4.1.20)

Thusτn ∼ logn if n→∞ and we have

yn(τ ) < yn−1(τ ) and
d

dτ
yn > 0 if τ < τn

yn(τ ) > yn−1(τ ) and
d

dτ
yn < 0 if τ > τn.

In order to relateτ to the former variablesθ and t explicitly, we use (4.1.14),

τ =
∫ θ

0
z1(θ

′) dθ ′

with z1 given by equations (4.1.10) and (4.1.11). It results from this last equation that

1

X

dX

dθ
= 1

2θ
+ 1+ 1

X

which gives

1

X + 1

dX

dθ
= 1

2θ

X

1+X + 1= z1+ 1. (4.1.21)

Finally we obtain

τ = log(X + 1)− θ (4.1.22)

so that by using equations (4.1.12) we obtain

τ ' θ = 1
2at

2 as t → 0 (4.1.23a)
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τ ' 1
2 logθ ∼ log t as t →∞. (4.1.23b)

Writing tn for the time corresponding toτn, we see that

tn ∝ n for n� 1. (4.1.24)

Furthermore, it is seen by induction from (4.1.16) and (4.1.23) that

yn ∝ t2n−1 if t → 0

yn ∝ ne−τ = n/t if t →∞. (4.1.25)

As a conclusion, it can be roughly said that the polymer of ordern is mainly present at
times of the order oftn: its concentration is very low ift � tn or t � tn.

At tn the concentrationXn is stationary(dXn/dt = 0) and

nXn(tn) ≡ yn(tn) = yn−1(tn) ≡ (n− 1)Xn−1(tn) (4.1.26)

and all otheryk are smaller.

4.2. Finite polymerization

We now assume that there is a maximum sizeN for the polymers: the polymerXN is
unstable and spontaneously dissociates intoN monomersX1. The reaction scheme is
that given by (2.1) and we again consider the case whereKn ∝ n. The monomer is
still introduced into the system with a constant rate and the equations, with a convenient
renormalization of time and concentrations can be written:

dy1

dt
= −y2

1 − y1M + (y1+N)yN + a (4.2.1)

dyn
dt
= n(yn−1− yn)y1 26 n 6 N − 1 (4.2.2)

dyN
dt
= N(y1yN−1− yN) (4.2.3)

with, as before

M(t) =
N∑
n=1

yN(t) = at. (4.2.4)

If t � tN , tN being the time defined in the previous section, the evolution of the
polymers of ordern < N is practically identical to the evolution described in the previous
section, sinceyN � 1. However, fort ' tN , the unstableN polymer begins to produce,
and its decomposition gives rise to a large, fresh production of monomers. They will in
term trigger all the reaction, mainly the formation of polymers of higher orders, which are
faster, until theN -mer temporarily disappears, while smaller polymers begin to be produced.
There is clearly an oscillatory regime, the oscillations being due to the strong feedback of
monomers caused by the decomposition of theN -mer, which itself enhance, then exhaust,
the production ofN -mers.

By numerically solving (4.2.1)–(4.2.3) for the initial condition (3.3.1) withA = 0.001
andN = 12 one obtains the behaviour shown in figure 5 forX1(t). We initially have
a decay for a while until a critical time where the concentration begins to oscillate. The
behaviour for the otherXi(t)′s is quite similar: there is a short initial period during which
Xi(t) growth from zero to their appropriate pseudosteady values. After a certain time, the
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Figure 5. X1(t) with-source evolution. The inset shows the behaviour for the initial time. The
line crossing the oscillations is the continuation of the ‘stable branch’.

system moves spontaneously away from the pseudosteady curves and oscillatory behaviour
develops. The oscillations eventually die out and there is a damped oscillatory approach to
another branch, ‘stable branch’ (see figure 5). The numerical analysis with different values
of N andA shows the same qualitative behaviour, the number of oscillations depending on
A (less of them asA increases) and the time for the onset of oscillations is shorter. The
same thing happens if we consider a small number of monomers initially present: as we
decreaseX1(0) the number of oscillations is smaller. Following Gray and Scott [18] we
may think of the first state as being unstable or, in some sense ‘repulsive’ in contrast to the
stability or ‘attractiveness’ of the other branch. Thus, we have a bifurcation to oscillatory
responses.

The numerical simulations show us that the oscillations are progressively damped out,
while all concentrations begin to increase regularly. Let us assume that in this final regime

yn ∼ cntαn (4.2.5)

with αn > 0. Then (4.2.2) implies

α1 = α2 = . . . = αN−1 = α
c1 = c2 = . . . = cN−1 = c

(4.2.6)
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and (4.2.3) implies

αN = 2α

cN = c2
(4.2.7)

so that (4.2.4) permits us to conclude that

αN = 1 α = 1
2

cN = a c = a1/2.
(4.2.8)

This analysis can be pursued by writing

yn = cntαn + dntβn + (4.2.9)

with 06 βn 6 αn.
Using (4.2.2) and (4.2.4) again finally gives

yn = (at)1/2− (N − 1)/2+O(t) 16 n 6 N − 1 (4.2.10a)

yN = at − (N − 1)(at)1/2+O(t) (4.2.10b)

with O(t)→ 0 if t →∞.
We can now compare this approximation with the numerical results obtained by

numerically solving (4.2.1)–(4.2.3) with initial conditionXi(0) = 0 for all i. In this case
the oscillations are not as pronounced as in figure 5. The results are shown in figures 6 and
7 and only the behaviour for very long time is shown.

In figure 6 the full curve is the numerical result forX1(t), the broken curve is the
approximation with only the first term in (4.2.10a) and the dotted curve is the approximation
with both terms. Figure 7 shows the results forXN(t). As it can be seen, the agreement is
satisfactory.

Figure 6. Comparison between numerically solving (4.2.1)–(4.2.3) (full curve) and the
approximation with only the first term in (4.2.9) (broken curve) and using the two terms (dotted
curve).
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Figure 7. As figure 6 but forXN .

5. Conclusions

We have studied the behaviour of a model based on the Smoluchowski equation in which the
aggregation involves monomer cluster reactions and the cluster ofN particles cannot adsorb
particles, but can only split up, that is, theXN cluster is unstable, and for mathematical
convenience we propose that it is split up mainly into monomers. In the sourceless case
the stability analysis showed that two stationary solutions exist where the trajectories tend,
the attraction basin of each one being determined byN , the maximum size of the cluster.
Besides, forN large the problem is similar to the addition problem without a source [19]
and an approximate solution is found, with very fair agreement with the numerical solutions.

The other issue addressed in this paper was the consideration of a sourceA of monomers.
In this case the model can have two parameters,N and A, and within a certain range
of parameters one encounters oscillatory behaviour. A numerical analysis with different
values ofN andA showed that the number of oscillations depends onA (less of them as
A increases) and the time for the onset of oscillations is shorter. The system jumps from
an unstable state (‘repulsive’) to a stable one. This is a bifurcation to oscillatory responses.
The oscillations eventually die out and there is a damped oscillatory approach to the stable
branch. Our analysis shows that the final evolution for the concentrations is of the form
t1/2 for Xn(n < N) and linear ont for XN . In contrast, when there is no restriction to
the maximum size for polymers and no dissociation the evolution goes asymptotically as
Xn ∼ e−τ = 1/t in agreement with the result by Brilliantov [19].
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